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Recent measurements of wave spectra and observations by remote sensing of the sea 
surface indicate that the author’s (1958) conception of an upper-limit asymptote to 
the spectrum, independent of wind stress, is no longer tenable. The nature of the 
equilibrium range is reexamined, using the dynamical insights into wave-wave 
interactions, energy input from the wind and wave-breaking that have been 
developed since 1960. With the assumption that all three of these processes are 
important in the equilibrium range, the wavenumber spectrum is found to be of the 
form (cos 0 ) p  u* g-t k-f ,  where p - + and the frequency spectrum is proportional to 
u* g C 4 .  These forms have been found by Kitaigorodskii (1983) on a quite different 
dynamical basis; the latter is consistent with the form found empirically by Toba 
(1973) and later workers. Various derived spectra, such as those of the sea-surface 
slope and of an instantaneous line traverse of the surface, are also given, as well as 
directional frequency spectra and frequency spectra of slope. 

The theory also provides expressions for the spectral rates of action, energy and 
momentum loss from the equilibrium range by wave-breaking and for the spectrally 
integrated rates across the whole range. These indicate that, as a wave field develops 
with increasing fetch or duration, the momentum flux to the underlying water by 
wave-breaking increases asymptotically to a large fraction of the total wind stress 
and that the energy flux to  turbulence in the water, occurring over a wide range of 
scales, increases logarithmically as the extent of the equilibrium range increases. 
Interrelationships are pointed out among different sets of measurements such as the 
various spectral levels, the directional distributions, the total mean-square slope and 
the ratio of downwind to crosswind mean-square slopes. 

Finally, some statistical characteristics of the breaking events are deduced, 
including the expected length of breaking fronts (per unit surface area) with speeds 
of advance between c and c+ dc and the number of such breaking events passing a 
given point per unit time. These then lead to simple expressions for the density of 
whitecapping, those breaking events that produce bubbles and trails of foam, the total 
number of whitecaps passing a given point per unit time and, more tenuously, the 
whitecap coverage. 

1. Introduction 
The breaking of waves is a process that is ubiquitous over two-thirds of the surface 

of the globe. It is clearly responsible for part of the transfer of mechanical energy 
from the atmosphere, through waves, to turbulence near the ocean surface and of 
momentum to ocean currents. It leads to enhancement of the heat transfer and 
especially of the gas exchange between the atmosphere and the ocean as the diffusive 
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surface film is disrupted by breaking events and gases are diffused downwards by 
intense small-scale turbulence (Kitaigorodskii 1984). Breaking events also augment 
substantially but locally the drag of the air on the water itself, as Banner & Melville 
(1976) have shown. 

During the past few years, a great deal of attention has been paid to the dynamics 
of breaking and the search for criteria under which waves might be expected to break. 
The remarkable theoretical developments and pioneering numerical experiments of 
Longuet-Higgins & Cokelet (1978) have traced the evolution of finite-amplitude 
gravity waves on deep water to the point of wave-breaking and just beyond, in cases 
where the breaking results both from the intrinsic instability of the wave and from 
local impulsive forcing. A notable property of these calculations is the demonstration 
that, in an already unstable wave, breaking occurs at wave amplitudes far less than 
those associated with Stokes’ limiting configuration for a steady wavetrain. At  very 
small scales, among the short gravity waves and gravity-capillary waves, the surface 
drift induced by the wind shear in the top couple of millimetres can also induce 
microscale breaking at small wave amplitudes (Phillips & Banner 1974). In spite of 
this, attempts have continued to find a threshold variable such as the local vertical 
acceleration, or possibly a combination of variables, that would determine the 
probability of breaking of an individual wave crest. The numerical experiments of 
Longuet-Higgins & Cokelet for pure gravity waves do make it difficult to associate 
any single local variable with the onset of breaking - it seems that the recent time 
history of the surface configuration is much more pertinent to the matter than a single 
local threshold variable. 

In any event, the idea that, if the local surface acceleration at a wave crest reaches 
some fraction of the gravitational acceleration g, the wave would then break, lay 
behind the author’s proposal in 1958 of an equilibrium range at high wavenumbers 
(and frequencies) of the wave spectrum. It was argued that, although the frequency 
or density of wave-breaking depends on the wind stress, the limiting configurations 
of the waves at any instant should not; since the spectrum is a representation of the 
configuration, it was postulated that the breaking process imposes an upper limit to 
the spectral density of wave components over wavenumbers substantially greater 
than that of the spectral peak, this upper limit being independent of the wind speed. 
The idea was, in fact, one of saturation rather than equilibrium, any excursion of 
the spectral density above this limit being relieved immediately by breaking. It then 
leads, on purely dimensional grounds, to upper-limit spectral asymptotes in the 
gravity-wave range of 

for the wavenumber spectrum and 

W) f(S) k-4, (1.1) 

@(a) K 9%-5, 

for the frequency spectrum, where 8 is the angle between the wind and the 
wavenumber k. In the intervening 25 years or so, these expressions have been found 
to be useful and reasonably accurate representations for the spectral forms over 
frequencies and wavenumbers greater than about twice that of the spectral peaks - in 
fact some empirical formulas such as the JONSWAP spectrum have been forced to 
assume this shape at large a. 

Nevertheless, as more accurate and extensive measurements have become available, 
it has become increasingly more evident that the idea of a hard, saturated upper limit 
to the spectrum is no longer tenable. One of the first indications was the fact that the 
constant of proportionality implied in (1.2), rather than being an absolute constant, 
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appeared to be a function of fetch, as documented extensively in the JONSWAP 
report (Hasselmann et al. 1973). Values measured in the laboratory or at short fetches 
in the field were found to be a factor of five or so larger than those measured in the 
open ocean. It strains one’s credulity to believe that the fetch should directly influence 
the structure of the high-wavenumber components of the wave field, since their 
interaction and generation lengthscales are very much shorter than even a moderate 
fetch. One obvious possibility wm that the presence of very much longer waves or 
swell, their orbital velocities convecting the shorter waves, may lead to an apparent 
decrease in the spectral density (particularly in the frequency spectrum, where 
Doppler effects are strongest), but unpublished calculations by the author based on 
his 1981 study of long-wave/short-wave interactions gave an augmentation rather 
than a decrease. Inevaluating the apparent variation of the constant of proportionality 
with fetch, it must be remembered that, in the individual sets of experiments at short 
fetches and in the open sea, spectral densities were measured over frequency intervals 
that were not very wide (typically about half a decade, with a range of spectral 
densities of over 100 to 1 over the range), and were frequently non-overlapping. At 
a given wind speed or friction velocity u*, the range of values of u*/c (where c is the 
phase speed of the components measured) may range from more than 1 to 0.5 in the 
laboratory or at short fetch, and from 0.3 to 0.04 in oceanic measurements; this 
suggests that the ‘ constant’ of proportionality obtained by fitting (1.2) to measure- 
ments over restricted ranges may in fact be a function of the ratio of the friction 
velocity of the wind to the representative phase speed of the wave components in 
the range of frequencies measured. 

Another persuasive indication that the spectral densities of short gravity waves 
generated by wind are not limited by a hard saturation upper limit is provided by 
remote sensing of the sea surface by means of the Bragg backscattering of radar 
signals from these components. Typical are the synthetic-aperture radar images, 
examples of which are to be found in Bed, DeLeonibus & Katz (1981). One notable 
image of the Nantucket Shoals region shows areas of enhanced return (hence 
enhanced spectral density of the surface-wave components) in regions of flow 
convergence produced by tidal streaming over relatively shallow bottom topography. 
It has long been recognized that the dominant waves are choppier in many regions 
exhibiting flow convergence (such m river estuaries with the outflow velocity 
decreasing seaward), but the imagery shows that this increase above the equilibrium 
level that is established by the wind on a uniform or zero current, extends to the 
shorter components as well. The relaxation rate of the wind-wave spectrum, when 
disturbed from equilibrium, is not infinite as it would be with a hard saturation limit, 
but finite. 

In  summary, then, it appears that, although (1.1) and (1.2) may have been found 
useful as a first approximation to the high-wavenumber and frequency components 
of the spectrum, the underlying assumption contained in them is no longer defensible. 
Nor, in fact, do they even provide the most accurate representation of recent, more 
careful and better instrumented measurements. Toba (1973) found empirically and 
with the aid of dimensional analysis that his wind-tunnel data was better represented 

(1.3) 
by a spectrum of the form 

or u*/c times (1.2), and this has been confirmed in field observations by Kawai, Okuda 
& Toba (1977), Donelan, Hamilton & Hui (1977) and others. With hindsight, one can 
see a trend towards (1.3) in the collection of spectra shown by the author (1977) to 
support the form (1.2); although the envelope of spectral segments over the 

@(a) oc u* gcT--4, 
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considerable range does decrease as u - ~ ,  the individual spectra seem to slope rather 
less steeply. The matter clearly demands reconsideration - 25 years is a pretty good 
lifetime for the simple ideas underlying (1.1) and (1.2), and if they are found to be 
no longer viable, they should be saluted and interred with dignity. 

In the present paper, we intend to take advantage of the insights developed since 
1960 concerning wave interactions, energy transfer from wind to waves and the 
energy-loss characteristics of breaking waves, in order to place on a firmer dynamical 
basis our description of this part of the wind-wave spectrum. In doing so, we are led 
not only to a frequency spectrum of Toba's form (1.3) and to its counterpart 
wavenumber spectrum, but also to a variety of results concerning the rates of 
momentum and energy loss from the wave field by breaking and to statistical 
properties of the wave field such as the average frequency with which the surface turns 
over and the distribution of length of breaking front per unit surface area according 
to speed of advance of the breaking region. Limiting forms for the rates of energy 
and momentum loss have been guessed previously on dimensional grounds, but the 
expressions to be derived here exhibit specifically the interrelations among them and 
their dependence on the properties of waves in the equilibrium range and also provide 
some constraints on the numerical constants involved. 

2. The statistical equilibrium among short waves 
The two-dimensional wavenumber spectrum of a random distribution of surface 

waves is usually specified in terms of the covariance of the surface displacement y 
at points separated by a distance r :  

Y(k) = ( 2 ~ ) - ~  (;(x) g(x+r )  e-ikrdr, s 
where the integral is over the entire r-plane. From the inverse of the Fourier 
transform, 

- s = J YWdk, (2.2) 

where this integral is over the entire wavenumber plane. Note that, since the 
covariance is an even function of r. 

Y(k) = Y ( - k ) .  (2.3) 

The dynamics of the wave field is, however, more conveniently described (partic- 
ularly when long-wave/short-wave interactions are involved, as they may be in the 
equilibrium range or when the waves are disturbed by currents) by the balance of 
action spectral density, defined as 

9 N(k)  = - Y(k) ,  
U 

= (iy Y ( k ) ,  

the latter form being pertinent to gravity waves, for which the intrinsic frequency 
u = (gk) t .  In these expressions, the water density is divided throughout so that the 
air density is p,/p,. Following energy paths, the action spectral density is conserved 
except for the processes of action exchange among different wave groups by nonlinear 
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interactions, input from the wind and dissipation by wave-breaking, so that the 
balance of action spectral density can be represented (see e.g. Phillips 1977) as 

dN aN 
dt at 
_-  - - + ( c , + U ) * V N =  -V,-T(k)+S,-D.  

In this equation T(k) represents the net spectral flux of action through the 
wavenumber k by resonant wave-wave interactions, and the flux divergence in 
wavenumber space represents the net gain or loss of action spectral density at the 
wavenumber k. These spectral exchanges are conservative for gravity waves, so that 
the integral of the first term on the right of (2.5) vanishes. The rates of spectral input 
from the wind S,  and loss D by breaking or by the formation of parasitic capillaries 
are represented only schematically in this equation. Their detailed forms will be 
considered later. 

As a wave field develops under the continued action of the wind, the dominant 
waves become more energetic and longer, but for the components whose wavenumbers 
are large compared with that of the spectral peak, the timescales of their growth 
becomes large compared with their internal timescales involved with wave-wave 
interactions, action input from the wind and loss by breaking. Consequently, these 
components approach a state of statistical equilibrium determined by a balance 
among these last three processes : 

-v,* T(k)+S,-D = 0. (2.6) 

In this equilibrium range, the detailed functional form of each of these terms is 
expected to depend on the nature of the spectrum N ( k )  in this range and it is of 
interest to  enquire what spectral characteristics are associated with the possible 
balances among the three terms of (2.6). 

A recent study by Komen, Hasselmann & Hasselmann (1984) has examined the 
balances among these processes in a ‘fully developed’ sea in the vicinity of the 
spectral peak and to frequencies up to 2.5 times that of the peak. The range of 
wavenumbers covered by these numerical calculations hardly extends into the 
equilibrium range, and the expressions they assume for the wind input is accurate 
only for wave components travelling faster than about lOu, (as is seen in more detail 
below), but these calculations do give valuable insights into the balances to be 
expected in this region of the spectrum. They are almost certainly more complex than 
those deep in the equilibrium range itself; our primary concern is with wavenumbers 
that are large compared with those of the spectral peak and the balances (2.6) that 
obtain over these wavenumbers even if the longer waves are still developing. 

First, let us consider the spectral redistribution of wave action which has been the 
subject of pioneering investigations by Hasselmann (1962, 1963) and others. It can 
be represented as a ‘ collision integral ’ over sets of four resonantly interacting gravity 
waves : 

-V,* T(k)  = j j s&p{[N(k)  + N(kl)l W,) N(k3)- “(k,) + N(k&l N(k) N(k1)) 

where the coupling coefficient Q is a complicated homogeneous function of the 
wavenumbers k, . . . , k, and is of order k3. The Dirac delta function 6 selects out those 
components obeying the resonance conditions for weak gravity-wave interactions 

x 6(k + kl -k, -k3) &(a+ g1 -gz - a8) dk, dk, dk,, (2.7) 

k+k, = k,+k,, g+a1 = a,+v,, 
17-2 
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and the integral is cubic rather than quadratic in N because resonant gravity-wave 
interactions involve sets of four components, rather than three, as in most other wave 
types. Extensive calculations by Sell & Hasselmann (1972), Fox (1976) and Longuet- 
Higgins (1976) indicate that the dominant interactions are primarily local in the 
wavenumber plane at  the relatively small wave slopes encountered in natural field 
wind-wave systems; Q is largest when the four wavenumbers concerned are all 
comparable (i.e. within a factor of two or so) in magnitude and, incidentally, in 
direction. Consequently, the net action transfer to a given wavenumber interval is 
determined primarily by the action spectral density in this vicinity. Near the spectral 
peak, of course, the flux to neighbouring wavenumbers is dominated by the presence 
of the peak itself, but at wavenumbers large compared with that of the peak, in the 
equilibrium range, the net spectral flux divergence a t  wavenumber k is determined 
by the values of N in this region, which scale as the local value N ( k )  itself. As a result, 
since (2.7) is cubic in N and since Qz cc k", the net spectral flux divergence 

- v , * T ( k ) ~ Q ~ P ( k ) k ~ / c ~ ,  

a g-ik?P(k) ,  (2.8) 

for gravity waves, for which CT = (gk)i. This form was given by Kitaigorodskii (1983). 
Equation (2.8) can be expressed more neatly in terms of a dimensionless function, 

the degree of saturation 
B ( k )  = k4 Y(k)  = g-ikiN(k) (2.9) 

defined by the author (1984). Under the old saturation-range assumption with the 
spectral form (1.1)) B ( k )  would be, at most, a function of 8, the angle between the 
wavenumber and the wind. However, as we have seen, this need not be so; in a 
dynamical equilibrium, B may also be a function of k ,  though one would anticipate 
that the dependence may be rather weak. In terms of the degree of saturation, (2.8) 
becomes 

-V , .T (k )=  ~ k - ~ B ~ ( k ) .  (2.10) 

The rate of action (or energy) input from the wind has been the subject of many 
theoretical and experimental investigations over the past 20 years that have, if 
nothing else, demonstrated the complexity and variety of the detailed processes 
involved. In order to provide a robust expression for S,  in (2.6), the best guide seems 
to be provided by the careful analysis of experiments interpreted in the light of only 
very general theoretical considerations. Plant ( 1982) suggests from a survey of such 
measurements that 

S,  = m case c~ - N ( k ) ,  (2.11) (:Y 
where he finds m to be about 0.04, u* is the friction velocity of the air flow over the 
water surface and c the phase velocity of the component concerned. As illustrated 
in figure 1, this form is a reasonably accurate representation for those gravity-wave 
components for which u*/c > 0.1 (for lower-frequency components it seems to be an 
overestimate), but waves for which c < lOu, include the equilibrium range even in 
well-developed oceanic situations. An expression of the form (2.11) has been 
suggested by others as well. Mitsuyasu t Honda (1982) give a numerical coefficient 
of 0.05, and Gent & Taylor's (1976) calculation suggests m - 0.07, but it will be seen 
later that these larger values seem inconsistent with measurements of other 
quantities. 

One might indeed expect a spectral action input rate of the form (2.1 1 )  on general 
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FIGURE 1. Measurements of the growth rate divided by radian frequency in terms of u,,/c. The open 
circles represent data surveyed by Plant (1982), the solid circles are measurements by Mitsuyasu 
& Honda (1982) and the triangles by Schule et a2. (1971). 

dynamical grounds. The critical layers associated with waves whose phase speeds are 
less than lOu, have disappeared into the region, ill-defined aerodynamically, of the 
viscous sublayer just above the water surface or among the roughness elements 
produced by very short capillary waves. (Only for the longer wave components, for 
which c is adequately larger than ~OU,, is the critical layer clear of the water surface, 
so that the rightly celebrated Miles (1957) mechanism becomes effective.) At the 
shorter scales, the energy transfer occurs by direct variations in surface stress, both 
normal and tangential. The mean wind stress 7 = @,/p,) u i ,  in units normalized by 
the water density, is disturbed by flow over waves with slope ak,  so that the first-order 
perturbations in stress are proportional to @,/p,) u i  ak.  If wind and waves are not 
moving in the same direction, one might argue that to the first order only the stress 
component normal to the wave crests is perturbed, so that the magnitude of the stress 
variations, normal and tangential, is proportional to (p,/p,) u i  ak cos 8. The rate of 
doing work on the water surface is the mean scalar product of the stress variations 
across the surface and the orbital velocity, with magnitude ( a k ) c ,  i.e. 
@,/p,) cos 8 u i  (ak)2c.  Since Y is the spectrum of the surface displacement, the 
spectral rate of energy input is 

Pa cos8 u i  k 2 c Y ( k ) ,  
Pw 
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and the spectral rate of action input is this divided by the intrinsic frequency u: 

8, K cos 8 u i  k2 cu-l Y ( k ) ,  
Pw 

Pw 
from (2.4), which agrees with (2.1 1). 

Although a specific directional factor appears in these expressions, it would be 
unwise at  this stage to ascribe too much significance to it. In  the measurements 
analysed by Plant (1982), 0 was, in essence, zero. Even if the wind were perfectly 
steady, three-dimensional effects of the air flow over wave hummocks are not properly 
addressed in these arguments. Under natural conditions, an alert helmsman knows 
that, in a nominally steady wind, its direction as well as magnitude varies randomly 
on timescales that are for him and for short-wave generation, significant. Consequently, 
it seems more prudent to take 

S, = m cos2PB u 3 N(k),  (: Y (2.12) 

where the value of p may be deduced from observational data. In terms of the degree 
of saturation defined earlier, 

Sw = M cos2P8 gk-'(?-)P B(k).  (2.13) 

The development of an expression for the rate of spectral action dissipation has 
fewer antecedents. Hasselmann (1974) provided a specific model involving a 
distribution of small dissipation perturbations, but this seems hardly appropriate 
here. The key is to establish the functional dependence of the dissipation rate on the 
quantities involved in the specification of the equilibrium range; the specific form 
of the function is given by the need to preserve the equilibrium balance (2.6). 

Wave-breaking is a local process in physical space, so a distributed process in 
Fourier space, and the occurrences of local wave-breaking and the consequent action 
and energy losses are the result of local excesses, however these excesses are produced. 
They may arise from a local convergence in an underlying current which increases 
the local degree of saturation and consequently the intensity of breaking. In  an active 
wind-generated wave field where wave-current interactions are negligible, the degree 
of saturation may be enhanced by wind input, but the extent to which wave-breaking 
occurs and the rate of action or energy loss from wavenumber k still has as its primary 
causative property some functional of the degree of saturation B over a range of 
wavenumbers surrounding k.7 Now, in the equilibrium range, with a wide separation 
between its upper and lower wavenumber limits, there are no internal wavenumber 
scales, so that in this functional, whatever it is (provided that its range of integration 
concerns only the equilibrium range), the degree of saturation B at other wavenumbers 
scales with that of k .  The spectral rate of action dissipation can then be expressed 

It is possible, as Professor H. Mitsuyasu has suggested to me, that, in a very strong 
wind-generated situation with steep dominant waves, the average spectral density at wavenumbers 
in the equilibrium range may be suppressed by additional significant local spectral action losses 
near the dominant wave crests. The statement above may then remain true locally, but, to find 
the overall spectral density, one would have to consider the departures from local equilibrium 
resulting from the interactions with the steep long waves, and average over the result. 
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as a function, rather than a functional of B(k) .  D has dimensions ~ k - ~ ,  and if, for 
example, 

D(k)  = gk-' F(k'/k, B(k'))  dk' I 
(remembering the L-2 dimension in dk), and anticipating that B(k)  varies as some 
power q of k, then 

k' 
k 

= gk-4 F(K, KQB(k)) dK, where K = -, 

= gk-4f(B(k)), (2.14) 

in accordance with the reasoning above. 
These arguments give the functional dependence of the dissipation rate in the 

equilibrium range, but, as mentioned previously, not the form of the functionf. From 
the formal mathematical point of view, this is determined simply by the need to close 
the equilibrium balance (2.6). Those who have struggled to find a spectral 
representation of wave dissipation may find this view somewhat uncomfortable, but 
it does, I believe, parallel the physics. The spectral dissipation of action or energy 
by wave-breaking in the equilibrium range occurs at whatever rate is needed to 
accommodate the net input. There is a close analogy here with the theory of 
turbulence at high Reynolds numbers: the rate of viscous dissipation by the small 
eddies is simply what is handed down to them from larger eddies as a result of the 
strong nonlinear interactions - their velocity and lengthscales (in this case) adjust 
themselves to accommodate whatever the spectral transfer provides. 

It is important to emphasize again that the processes of wave-wave interaction 
and losses by wave-breaking are not, in general, spectrally local as, indeed, the 
calculations of Komen et al. (1984) demonstrate explicitly. Only over wavenumbers 
that are more distant both from the spectral peak and from the upper limit to this 
range than half the interval of: wavenumbers that is needed to specify these non-local 
processes, that is, only well inside the equilibrium range, can these scaling arguments 
be used to represent them as, in effect, spectrally local. 

In  summary, then, we have three physical processes that are pertinent to the 
equilibrium range in an active wind-generated sea, that balance among themselves 
and are of the forms: 

I 

spectral flux divergence K gk-4 B3(k) ,  

wind input = m cos2P B gk-4 ( : yB(k ) ]  2 

dissipation = gkP4f(B(k)). 

What is the nature of this balance? There are several alternatives. 
Kitaigorodskii ( 1983) has proposed the existence of a Kolmogoroff-type equilibrium 

range in wind-generated waves in which the energy input from the wind is assumed 
to occur primarily at the energy-containing scales with dissipation restricted to much 
larger wavenumbers. This then postulates the existence of a range of wavenumbers 
over which the spectral flux divergence, wind input and dissipation rate are all 
negligible; the balance (2.6) is achieved by all terms vanishing. The directionally 
integrated spectral energy flux go is constant over this range. A critical step in his 
argument is that the spectral flux itself, like the flux divergence in (2.15), is cubic 

(2.15) 
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in the spectral density, so that the directionally averaged spectrum F ( k )  is proportional 
to ek. With this basis, it then follows on similarity grounds that 

F ( k )  = I' Y ( k ,  0 )  do oc ekg-4k-g. (2.16) 
--t 

The corresponding frequency spectrum, with the dispersion relation a = (gk) i ,  is 

@(a) OC 4 g a - 4 .  (2.17) 

Arguing further that eo oc @,/pw) V, where U is the mean wind speed or, approxi- 
mately, that go oc u:, he obtains wavenumber and frequency spectra of the forms 

F(k)  cc u* g-ik-g,} 
@(a) OC u*gu-4,  

(2.18) 

the latter of which is precisely the form found empirically by Toba. 
The principal conceptual difficulty with Kitaigorodskii's argument is the need to 

postulate that the energy input from the wind is concentrated a t  wavenumbers close 
to that of the spectral peak. To be sure, the air flow over the dominant waves may 
modify somewhat the rate of energy input to smaller waves, but it is difficult to see 
why it should be suppressed entirely. Indeed, according to (2.11), the rate of action 

which increases rapidly, rather than decreases, as the frequency increases. Direct 
measurements by Snyder et a2. (1981) made in the Bight of Abaco, Bahamas, on the 
surface-pressure fluctuations in air flow over waves show also that the rate of energy 
input per wave cycle continues to increase with frequency up to the highest values 
they could measure, which corresponded to c / u *  - 5, well into the equilibrium range. 
Yet the main result of Kitaigorodskii's analysis does agree with the form proposed 
by Toba ! 

The object of this paper is to indicate how an equilibrium spectrum of the Toba 
type as well as other spectral forms can be derived from a very different assumption 
about the dynamical balances in the equilibrium range, and this, at the same time, 
allows us to derive (rather than infer from observations or postulate on dimensional 
grounds) a number of expressions concerning the energy and momentum flux that 
is supported by the equilibrium range and the statistical characteristics of the 
breaking events themselves. We have just seen that the experiments summarized by 
Plant (1982) over the range 0.5 < c / u *  < 10 and those of the Bight of Abaco from 
5 < c / u *  < 20 or so indicate t.hat direct energy transfer from the wind continues to 
be important throughout the equilibrium range. There are no direct measurements 
of the spectral flux divergence associated with nonlinear interactions, but the 
calculations summarized in the JONSWAP report (Hasselmann et al. 1973), or those 
given by Komen et al. (1984) indicate that it is negative (meaning a net energy input), 
and continues to be so over all frequencies calculated above twice that of the spectral 
peak, that is, in the equilibrium range. Although the actual magnitudes found are 
specific to the spectral forms used in the calculations, the consistency of this 
qualitative feature gives confidence that nonlinear action and energy spectral flux 
divergences remain an important characteristic of the equilibrium range. There are 
neither direct measurements nor reliable calculations concerning the spectral rate of 
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action and energy dissipation by breaking, but even a casual observation of the sea 
surface under active wind-generating conditions will note the occurrence of breaking 
events over a range of scales from longer, vigorous events associated often with the 
dominant waves, producing whitecapping, air entrainment and a trail of foam, 
through smaller, more transient events with splashing and a few air bubbles to much 
smaller breaking occurrences, microscale breaking (these need a quicker eye) in which 
rippling and possibly a train of parasitic capillaries indicate that the sea surface is 
turning over. It seems reasonable then to assume that these dissipative processes also 
are pertinent throughout the equilibrium range. 

Let us therefore explore the consequences of the assumption that, in the equilibrium 
range, the processes of energy input from the wind, spectral flux divergence and loss by 
breaking are all of importance, and that the balance (2.6) includes non-trivial 
contributions from all three. Now, at wavenumbers inside the equilibrium range, 
those substantially larger than that of the spectral peak and much smaller than those 
influenced by capillarity, molecular viscosity or drift of the surface skin, the local 
dynamical balance is, as argued previously, uninfluenced by wave characteristics 
outside this spectral range. The equilibrium range has no internal wavenumber scale 
(except for the wavenumber under consideration) so that the ratios of the terms in 
the spectral action balance must be constant. (If there were some internal wavenumber 
scale, k, say, then the ratios at wavenumber k could be a function of k/k,, but this 
is not so.) Consequently, well inside the equilibrium range, though not at wavenumbers 
near the spectral peak nor near the upper wavenumber limit, all three quantities in 
(2.15) must be proportional, and 

B3(k) cc m COS2P6 B(k) cc f (B(k)) .  (: >p 
It follows immediately that the degree of saturation 

(2.19) 

(2.20) 

and the dimensionless action dissipation function 

f(B) = YB3(k)9 (2.21) 

where /9 and y are numerical constants. (Note that, from the definitions, 
B(k)  = B( -k); in (2.20) the absolute value of cos6 is to be understood.) 

3. Wave spectra in the equilibrium range 
Equations (2.20) and (2.9) lead to a wavenumber spectrum in the equilibrium range 

Y ( k )  = k-4 B(k) ,  
of the form 

= ~ ( C O S  6 ) P e )  k-4, 

= ~ ( C O S  6)p U* g-4 k-i, (3.1) 
over a range of wavenumbers substantially larger than that of the spectral peak. The 
upper limit in wavenumber to which this range can be expected to extend is 
determined by the smallest wavenumber at which new, small-scale dynamical effects 
become important. These may include capillarity, molecular viscosity or dissipation 
in surface films or the suppression of very short gravity waves by surface drift ; these 
dynamical limitations will be considered in detail shortly. 
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The frequency spectrum in the equilibrium range can be found from (3.1) by 
integration over all wavenumbers a t  constant frequency u. The use of the dispersion 
relation u = (gk)t neglects the Doppler-shifting from the oscillatory advection of short 
waves by the orbital velocities of the dominant waves (or by tidal currents, if they 
are present) and places a kinematic upper limit to the range of frequencies that is 
distinct from, and generally more restrictive than, the dynamical limitations 
mentioned in the previous paragraph. If p is the mean-square surface displacement 
in the wave field associated with the dominant waves, the corresponding orbital 
speeds are of order 2(F)i  a,, where uo is the peak frequency. The Doppler-shifting is 
insignificant only for those components whose intrinsic phase speed g/a is large 
compared to this, or whose frequencies are less than 

where s = (pp/Ao, the so-called ‘significant slope’ of Huang et al. (1981), A, being 
the dominant wavelength. Accordingly, the frequency spectrum 

where (3.5) 

in terms of the beta function B(m,n). The variation of this integral with p is 
illustrated in figure 2. 

These spectra (3.1) and (3.4) are similar to those derived by Kitaigorodskii (1983) 
on a quite different dynamical basis, though his theory gives only the directionally 
averaged version of (3.1). Why the similarity? A key ingredient in both theories is 
the cubic dependence on the spectral density of the spectral-flux divergence (here) 
and the spectral flux itself (in Kitaigorodskii’s approach). Kitaigorodskii assumes that 
the directionally integrated energy spectral flux, independent of k,  is proportional 
to u:, so that the spectral density is proportional to u,-the rest follows by 
dimensional analysis. In the present approach, the action spectral-flux divergence is 
proportional to gk-4 B 3 ( k )  so that the energy spectral-flux divergence V k * e ( k )  is a 
times this, or 

V k . € ( k )  K - (CO8 8)3p Ui k-’, (3.6) 

from (2.20), which has the same u i  dependence. Since this flux divergence plays a 
central part in the balance (2.6) or (2.15) underlying this theory, as does the spectral 
flux itself (assumed constant) in Kitaigorodskii’s theory, then, for dimensional 
reasons, the results must be equivalent, at least as far as the spectral shapes are 
concerned. 

Many more measurements are available of the frequency spectrum than of the 
wavenumber spectrum, though in reviewing them one must be alert to distortions 
at higher frequencies introduced by Doppler-shifting. Most of the spectra that, as an 
ensemble, suggested a a-6 form for the equilibrium range (Phillips 1977), were 
measured at  various wind speeds and averaged directly (in dimensional form rather 
than in the dimensionless form of figure 3) and it is difficult to reanalyse them. More 
recent, better documented and better analysed field measurements have been made 
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FIQIJRE 3. A dimensionless plot of the frequency spectrum in the equilibrium range. The broken 
lines enclose the extensive measurements of Forristall (1981) and the continuous line represents 
(3.4) with a = 0.11. The open circles indicate results from Kawai et al. (1977) at u* = 37.2 cm/s; 
results from Kondo et ul. (1973) are shown as solid circles at u* = 49.6 cm/s and the triangles at 
u* = 24.4 cm/s. 



518 0. M .  Phillips 

Author 

Laboratory 

Field 

Toba (1973) - 2 c(2 x 70-130 - 5  

- 2-5 - Kondo et al. (1973) 2 6 
Kawai et al. (1977) 54 6.2 + O .  1 0.2-2 2-9 1-2 
Mitsuyasu et al. (1980) 14 8.1 5-100 2-7 0 . s 2  
Kahma (1981) ca. 50 11 0.5-6 1.5-6 
Forristall (1981) Many 11.0 - 2-6 0.8-2 

- 

TABLE 1. A summary of measurement values of Toba’s constant a, with the ranges of dimensionless 
fetch 9x1 q,,, dimensionless frequency of the dominant wave a, u,lg and ‘significant slope ’ s of 
the dominant waves 

by Kawai et al. (1977), Mitsuyasu et a1.(1980), Forristall (1981) and Kahma (1981): 
some of these are summarized in figure 3 and table 1.  The individual sets of 
measurements all indicate slopes close to -4, but the scatter in spectral level (that 
is, the value of Toba’s constant a) is considerably greater among the different sets 
than it is within each individual set. There seem to be no systematic variations with 
‘significant slope’ s over this range or with gx/ qo or uo uJg, but the values found 
by the Japanese investigators are lower than those from the North American studies. 
The waves themselves should be pretty much the same in both Hemispheres, but there 
may be some systematic calibration or analysis differences. The spectrum of Kawai 
et al. shown is only one of 54 measured ; in their series individual spectra had a mean 
slope and standard deviation of4.13 k0.20, the constant a in (3.4) being0.062 kO.010. 
Forristall’s data, taken from offshore platforms, cover a wide range of meteorological 
conditions including hurricanes, U.S. East Coast winter storms as well as relatively 
mild conditions in the Gulf of Mexico, but nonetheless they group quite tightly around 
a line proportional to (~u*/g)-~, tailing off to a slightly higher slope, about (~u,/g)-~, 
when uuJg > 0.2. His mean value for the Toba constant is given as 0.110 (after 
recalculation of frequencies from Hz to rad/s). Toba’s earlier laboratory results at  
large values of uouu*/g = uJc0 give a a good bit smaller than the field values, but 
they are almost certainly influenced strongly by wind-drift effects. As far as the 
frequency spectrum is concerned, then, there seems to be little question that (3.4) 
agrees better with a wide range of field data than does (1.2), though some unfortunate 
uncertainty persists concerning the precise value of a. Nevertheless, the theory 
developed in this paper will offer some constraints that may somewhat reduce this 
uncertainty. 

The two-dimensional wavenumber spectrum Y(k)  contains more information than 
the frequency spectrum and is more directly interpreted, since the wavenumber 
distortions of the equilibrium range produced by dominant wave straining are smaller 
(proportional to ak) than the Doppler-shifting in the frequency spectrum (proportional 
to (u/ao)ak.  The pioneering measurements of Pierson (1962) in the Stereo Wave 
Observation Project provide what is still the most direct measurement of Y(k), 
though the data is limited and the accuracy not high. There have been, of course, 
a number of directional frequency spectra, and these will be discussed later. Remote 
sensing by radar observations has to date been more successful in measuring the 
spectra of swell (Beal et al. 1981) than of the shorter, equilibrium-range components. 
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There are, however, a number of measurements that can be related directly to the 
wavenumber spectrum Y(k). The wavenumber spectrum of slope in the l-direction, 

= k: Y(k), (3.7) 

where x’ = x + r ,  and, if this direction is inclined at an angle 8, to the wind, the 
equilibrium-range form gives 

s,,(k) = ,qcos(e-e,))p cos2e u,g-ik-:. (3.8) 

The spectrum of the total slope, 

Also, the spectrum of an instantaneous line traverse of the sea surface, the Fourier 
transform of C(x) C(x+ r, ) ,  is 

X(k1) = Jrn W k )  dk,, 
-W 

and for wavenumbers k, in the equilibrium range, since k, = k, tan 8, 
W 

~ ( k , )  = @*sf! cosp (8-8,) (kl+k:)fdk,, 
- W  

h 
= ,6u, gf k;t j+n cosp (0 -8,) cost 8 do. 

For a traverse in the windward direction, 8, = 0 and 

X(kJ = 4P+a,pu*g-W, 

while, in the crosswind direction, 8, = in and 

(3.10) 

(3.11) 
k 

xW1) = B(&+1),q)Pu*g-ik;t, 

where B(m, n )  is the beta function as usually defined. Three individual spectra of this 
kind were obtained with a laser wave profiler by Schule, Simpson & DeLeonibus 
(1971); they are shown in figure 4.11 of Phillips (1977). Overall, it must be admitted 
that these decrease at a rate more like kL9 (as predicted under the old saturation 
hypothesis) than k$. It would be very useful to repeat and extend measurements of 
this kind. 

Another group of spectral forms can be related to the basic wavenumber spectrum 
only by the use of a dispersion relation, and this restricts their easy interpretability 
to frequencies for which long-wave Doppler-shifting is negligible. Foremost among 
these is the directional frequency spectrum 

(3.12) 

which is such that 

- 
= jorn I,,’ @(c, 8 )  d8 da. 
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(The spectrum Ul,(u,B) defined by Phillips (1977) is C T - ~  times @(u,O).) From (3.1) 
we have for the directional frequency spectrum 

q u ,  e) = 28 cosp e u* gu-4. (3.13) 

Measurements of this spectrum have been made by Longuet-Higgins, Cartwright & 
Smith (1963) and Mitsuyasu et al. (1975, 1980) using different cloverleaf buoys. The 
angular distribution functions were found in both cases to be generally unimodal and 
broader for the higher frequencies of the equilibrium range than for frequencies near 
the spectral peak, though the angular resolution was limited. Donelan et al. (1984), 
with an array of 14 wave staffs in Lake Ontario, were able to confirm that the linear 
dispersion relation was obeyed to frequencies beyond three times that of the spectral 
peak, and that the frequency spectrum in the equilibrium range varied as u - ~ .  Their 
study was concerned primarily with the directionality of longer-wave components, 
those in the vicinity of the spectral peak, but they found that, when u > 1.6u0, the 
directional factor could be represented empirically as sech, (1.248). There is not much 
to choose (within the accuracy of the experiment) between this and a ( c o s B ) ~  
distribution, with p - 2. 

Finally, the frequency spectrum of slope, measured at a fixed point, can be 
expressed in terms of the wavenumber spectrum, but, since short gravity waves (and 
possibly capillary waves as well, which we do not consider in this paper) contribute 
substantially, the limitations imposed by Doppler-shifting are even more severe. Only 
the lower-frequency component of the slope spectrum can be calculated simply from 
the wavenumber spectrum; i.e., in a tidal stream with speed U ,  only for frequencies 
less than the minimum of (41te)-' and g / U .  Over this range, however, the frequency 
spectrum of slope in the windward direction 

= 481@ + 2) u* g - l ,  (3.14) 

from (2.8) with 8, = 0. The corresponding spectrum of slope in the crosswind direction 

(3.15) 
is found to be 

and the frequency spectrum of total slope in this range is 

~ , , ( d  = 48MP) - I @  + 2)) u* g - l ,  

(3.16) 

These results indicate that the frequency spectra of slope are proportional to u* 
and flat, independent of u, provided the frequency is sufficiently smaller than those 
influenced by the convective effects of the longer waves or of any tidal stream. The 
well-known laboratory measurements of Cox (1958) do not have a discernible 
equilibrium spectral range among the gravity-wave components, but more recent field 
measurements by Tang & Shemdin (1983) do extend to much lower frequencies. Their 
results for the spectrum S,,, replotted according to  (3.14), are shown in figure 4. These 
spectra were measured in the presence of waves with significant heights up to 1.23 m 
and tidal currents up to 0.6 m/s; in the low-wind case the range of validity of the 
dispersion-relation transformation was limited by tidal currents and in the others by 
long-wave advection. In each case, however, it  appears that the kinematic advection 
effects had become serious at frequencies about 15 rad/s, so that the spectra can be 
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compared with these results only over a frequency range substantially below this 
limit. The dynamical limitations (capillarity, and the influence of wind drift) become 
important only at higher frequencies in these experiments. Over the low-frequency 
range there is a good deal of sampling error, but not much systematic trend in the 
spectral levels below about 7 radls. The spectral densities measured in this range are 
generally consistent with the values obtained for Toba's constant: 

aI(p + 2) 
I @ )  

.c a, 4PI@ + 2) = 

if a lies in the range 6 x (Forristall). At higher 
frequencies, where advection effects are significant and interpretation is difficult, the 
spectra measured clearly do not follow the form (3.14), but decrease approximately 
as cP. The total mean-square slopes are not, of course, affected by the spectral 
distribution : Tang & Shemdin found that the downwind and transverse mean-square 
slopes were about equal in cases of a wind-wave field with a single well-defined peak. 

(Kawai et al.) to 11 x 

4. Fluxes through the equilibrium range 
An important aspect of the present theory is that it provides not only spectral forms 

in the equilibrium range, but also estimates for the spectral distributions and total 
rates of dissipation of wave action, wave energy and wave momentum, and these lead 
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to a variety of expressions that can be compared with existing observations or can 
suggest new ones. 

The spectral rate of dissipation of wave action is given from (2.15), (2.20) and (2.21) 
as 

= Y / ~ ~ ( C O S  0 ) 3 p  9-4 u$ k-i. (4.1) 

More interesting is the spectral rate of energy loss from the wave components in the 

(4.2) 
equilibrium range : 

which is, of course, proportional to the spectral rate of energy input from the wind 

s,(k) = US, = rn /3(~0~0)~pu$ k-2, 

from (2.15) and (2.20), but greater than it if the spectral flux divergence represents 
a net gain, as the JONSWAP calculations suggest. Consequently 

~ ( k )  = c D ( k )  = y p ( c ~ s O ) ~ p u $  k-2, 

yp” > m x 0.04. (4.3) 

The expression (4.2) represents the spectral distribution of the rate of energy loss 
from the surface waves with wavenumber k. The turbulence generated in the water 
as the result of wave-breaking has a lengthscale closer to that of the breaking zone 
than the wavelength, but, as we shall see later, the two are approximately 
proportional. Consequently, the energy source for the near-surface turbulence 
represented by wave-breaking is, in mean, distributed over a wide range of scales (the 
distribution over scalar wavenumber k being proportional to u i  k-l) rather than being 
concentrated at the energy-containing scales as it is in shear-generated turbulence. 
The energy supply is, however, highly intermittent, being associated with sporadic 
breaking events. Infrequent but large energy pulses at the larger scales and the much 
more frequent, smaller turbulent-energy pulses from small-scale breaking all contri- 
bute to the turbulent-energy supply. Turbulent-energy levels and local rates of 
dissipation are expected to be equally intermittent. 

The spectral distribution of the mean flux of momentum transferred by breaking 
waves to the underlying water is given by 

The integral of this represents, of course, only that part of the mean momentum flux 
from the wind to the sea which is transferred to waves and subsequently lost by 
wave-breaking. Some part is transferred directly by the mean shear stress on the 
water surface and part, transferred to waves, is associated with wave growth. It may, 
however, represent a dominant part, as the considerations of $5 suggest. Part of the 
momentum flux (4.4) is supplied by transfer from the dominant waves near the 
spectral peak, so that the net rate of loss in the equilibrium range is greater than the 
net direct rate of energy input from the wind, in accordance with the inequality (4.3). 

Expressions for the total rate of energy and momentum loss from the waves in the 
equilibrium range involve the values of the wavenumbers at  the upper and lower 
limits of this range. Measurements of the frequency spectra in the field in an actively 
generated wave system indicate that the lower limit k, is surprisingly close to, but 



Spectral properties of wind-generated gravity waves 523 

rather above, the wavenumber of the spectral peak, the components concerned having 
just settled down from the overshoot effect. (Laboratory measurements are often 
dominated by harmonics of the primary wave, and the whole wave field is much less 
dispersive - see e.g. Ramamonjiarisoa & Coantic (1976) and Phillips (1981)). The 
upper limit k, to the equilibrium range is less certain. The kinematic distortions 
introduced by long-wave straining are only of order s in the wavenumber spectrum 
and can be neglected. The dynamical processes underlying this theory are specific to 
gravity waves, so that necessarily k, + (g / y ) t ,  where y is the ratio of surface tension 
to water density. More restrictive, however, is likely to be the effect of surface drift 
in the upper few millimetres of the water below the surface. Banner & Phillips (1974) 
have shown that, if the drift at the surface is q, then freely travelling gravity waves 
whose phase speed in this direction is less than q are strongly suppressed. A number 
of sets of observations, beginning with Keulegan (1951), have shown that q x u*, so 
that if this suppression is effective in field situations then k, x g/ui. This wavenumber 
lies in the gravity-wave range for all but the lightest winds and decreases as the wind 
speed increases. If wavenumbers above this value are suppressed, we are led to the 
rather uncomfortable conclusion that at  higher wind speeds there is something of a 
spectral gap between the shortest freely travelling gravity waves of the equilibrium 
range and the capillary waves, which may be directly wind-generated, exist as. 
parasitic capillaries or be generated by small-scale breaking. This would not, of course, 
be evident in the frequency spectra because of long-wave Doppler-shifting, and no 
wavenumber spectra yet exist that could resolve it. However, one's qualitative 
impression of looking at storm seas is that, despite streaks of foam and impressive 
dominant waves, the shorter gravity-wave roughnesses on the surface do not seem 
to be as distinct as they are under less violent conditions. A more persuasive reason 
will appear in a moment, and, if such a spectral gap does exist, it  has important 
implications for remote sensing of the sea surface by radar wavelengths in this range. 

In  any event, the total rate of energy input into the surface-layer turbulence by 
wave-breaking over the equilibrium range is found by integration of (4.2) : 

& k, 
e o = 2 J  J e(k)kdkdO, 

+n ko 

Quantities such as this are more usually expressed in terms of the air density; 
restoring the density factors, we have 

As a wave field develops from, say, an initial state of rest, the rate of energy transfer 
from waves to turbulence in the water, initially zero, increases logarithmically as the 
extent of the equilibrium range increases. If k, = rg/ui  and we approximate ko by 
the wavenumber of the spectral peak, g / c &  where r is a number approximately unity, 

and if the fetch and duration of the wind are sufficient that the dominant waves move 
at approximately the speed of the wind, the last factor can be replaced by In (rCG1), 
where CD is the drag coefficient. 
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The total momentum flux to the surface layer by wave-breaking is likewise 

7, = (4yp I( 3p + 1) "-> pa g-i u: ( I j  - ki),  
Pa 

(4.8) 

which, if the range of wavenumbers in the equilibrium range is large so that k, % k,, 
is dominated by the upper wavenumber limit to this range. Since necessarily under 
all conditions 7, < 7, = paui, this expression in fact forces us to conclude that 
kj oc u;l; with k, = rg/ui, we have in a well-developed wave field that 

7, = [4yp  43p + 1) &&]pa u;, 
Pa 

(4.9) 

where the coefficient in the square bracket is necessarily less than unity. 
The total mean-square slope of the sea surface associated with the gravity-wave 

components can be approximated by integration of (3.8) and (3.9) over the range 
(k,, k,). In  the windward direction, 

= 4pI(p + 2) U* g-i(ki - 4), (4.10) 

while the total mean-square slope 

(vtl)" = 4/?I(p)u*g-i(ki-kk). (4.1 1)  

The ratio of these clearly depends on p alone and is equal to I(p+2)/I(p). 
Measurements of this ratio by Cox & Munk (1954), which may include contributions 
from capillary waves as well, range from 0.5 to 0.64, while more recent results of Tang 
& Shemdin (1983) in waves with a well-defined spectral peak give an average ratio 
of a little less than 0.5. 

In a well-developed sea, with k, = rg/ui % k,, the downwind mean-square slope of 
the gravity waves approaches 

(g): = 4&/3I(p+2), 

while the crosswind contribution 

with the total = 4ripI(p) = ha, (4.12) 

where a is Toba's constant. 
As a wind-generated wave field develops, then, the extent of the equilibrium range 

widens and the mean-square slope of the gravity-wave components increase towards 
an asymptotic value approximately equal to Toba's constant. This simple and 
interesting result is, however, a little hard to assess immediately in the light of 
observational results available at  the present time. In both Cox & Munk's classical 
results and in Tang & Shemdin's, the contributions from the capillary waves to the 
mean-square slope cannot - be sorted out. Nevertheless, at  wind speeds greater than 
10 m/s, the values of (Vg)2 obtained by these authors for a clean sea surface and 
well-defined spectral peak do average to a value of about 0.06, close to the estimate 
of a obtained by Kawai et al. (1977) but less than those found by Kahma (1981) and 
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Forristall (1981). If the latter are more nearly correct, then - r - 0.3. Perhaps the 
capillary-wave components do not contribute significantly to (Vg)2 after all - if they 
did, the total mean-square slope would probably exceed a. 

5. Constraints on the empirical constants 
A number of empirical coefficients appear in this description, some of which have 

been measured in, or can be inferred from, different sets of experiments. However, 
some of the evidence is fragmentary, and troubling discrepancies do remain between 
different sets of measurements of the same quantity, particularly Toba’s constant a. 
The theory given here provides certain relationships among these quantities and 
constraints on their magnitudes - can we use it to reduce the uncertainties that 
presently exist ? 

To summarize, the pertinent numerical coefficients and the relationships among 
them are as follows. 

(i) p ,  the index in the directional distribution of !P(k). Plant’s (1982) form suggests 
p = t ,  while the measurements by Donelan et al. (1984) suggest that p - 2, though 
the frequencies they consider are at the very low end of the equilibrium range. The 
measured ratio of the mean-square slopes in the downwind direction to the total, 
I(p+2)/I(p), averaging about 0.5, suggest, from figure 2, a s m l l  value of p and a 
wide directional distribution of the equilibrium-range components. 

(ii) a, Toba’s constant. Field measurements summarized in table 1 fall in the range 

(iii) /?, the numerical coefficient in the wavenumber spectrum. From (3.3) and (3.4), 
(6-1 1)  x 10-2. 

/3 = a/4I(p). (5.1) 

No independent, direct and reliable measurements of /? are known to the author. 
(iv) r ,  the coefficient of order unity associated with the upper-limit wavenumber 

of the gravity equilibrium range. 
(v) y ,  the constant of proportionality in the wave-breaking dissipation function, 

which, according to (4.3) is such that y p  is somewhat larger than the wind-wave 
coupling coefficient, approximately 0.04. 

(vi) The wind-stress constraint from (4.9) : 

4y/PI(3p+l)&fi< 1 ,  
Pa 

or 9 4 3 p +  1 )  d < 3 x 10-4. (5.2) 

Less reliably, we also have the following. 
(vii) The mean-square slope asymptote da, possibly about 0.06. 
(viii) Spectral levels of the frequency spectrum of slope in the downwind direction. 

Tang & Shemdin’s results suggest that 

4/31@+2) x ( 3 4 )  x lop2, (5.3) 

though with considerable uncertainty. 
Since the quality of these data varies considerably, any attempt at  optimization 

of the set of numerical values would be highly subjective. Let us simply consider a 
couple of alternatives. The mean-square slope measurements as a whole suggest a 
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small value of p .  If p = ;t, the downwind to total mean-square slope ratio is 0.53, close 
to what is measured, and, if a = 11 x 

p = 1.2 x and 4pI(p+2) = 6.8 x lop2, 

rather larger than the value given by (5.3). Since y/P is somewhat larger than 0.04, 

then 

yp1(3p+ 1) > 6.7 x 

requiring (from (5.2)) that ri is about 0.4 or less. This is somewhat smaller than 
indicated by (vii) above. If the true value of Toba’s constant is less than this, say 
6 x which is consistent with (5.3). 
On the other hand, yp3 I(3p+ 1 )  > 4 x which allows ri to be possibly as large 
as 0.7, giving ha rather smaller than 0.06. Consequently, a wide directional 
distribution of the wavenumbers in the equilibrium range in either case allows a 
reasonable but not perfect consistency with different sets of measurements, but 
requires the wind-stress inequality to be very tight - a considerable portion of the 
total stress in a well-developed wind-wave field must be transmitted to the water by 
the breaking of waves in this range. 

On the other hand, a value of p of 2 would imply a downwind-to-total mean-square 
slope ratio of 0.75, which is considerably higher than the values measured either by 
Cox & Munk or Tang & Shemdin. From (5.1) if a = 11 x /3 would then be 
larger than before, 1.7 x and the inequality (5.2) is still rather tight, since 
y p  1(3p + 1) > 6.4 x 4/?1(p+ 2) is then 8 x lov2, rather too large when compared 
with (5.3). With a relatively narrow directional distribution such as cos2 8, reasonable 
consistency in the measurements other than the slope ratio can be obtained only with 
a value of a smaller than measured by Kahma and by Forristall. It is clear that the 
keys to resolving these uncertainties are the accurate determination of p and the 
directional distribution in the equilibrium range, and it is to be hoped that remote 
sensing or other techniques will soon make this possible. 

then /3 = 0.7 x and 4pI@ + 2) = 4 x 

6. Some statistical characteristics of breaking waves 
As the wind blows over the water surface, at any instant the fronts of the breaking 

waves define a distribution of isolated line or arc segments. The scales of the breaking 
waves may cover a very wide range as described earlier, from very short gravity waves 
in which a moving convergent stagnation point is marked by a group of capillary 
ripples through intermediate scales (15-30 cm or so) where the breaking is unsteady 
and turbulent but only a few bubbles are produced, to actual whitecaps in which the 
breaking and the generation of turbulence is so vigorous that extensive patches of 
foam are generated. There is clearly some association of the breaking events with 
waves of different scales, but it is difficult to make the association in an unambiguous 
way if we consider only the surface configuration at one given instant. A breaking 
crest may indeed be a local maximum in the instantaneous surface configuration but 
there is no guarantee that a local wavelength of the breaking wave can be defined 
clearly. It seems more satisfactory to use the velocity c of the breaking front as a 
measure of the scale of the breaking, since this is a well-defined quantity that might 
(conceptually at any rate) be measured from cine images of the sea surface. In 
practice, it  could be obtained relatively easily for those breaking events that generate 
whitecaps, thought it may be difficult to discern the many smaller-scale, fugitive 
occurrences of breaking that do not generate discernible bubble trains but which still 
turn over the water surface as they advance. 
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In  any event, let us define a distribution A(c)  such that A(c)dc represents the 
average total length per unit surface area of breaking fronts that have velocities in 
the range c to c+dc. The total length of breaking fronts per unit area is then 

L = A(c)dc. I 
In  unit time, the fraction of sea-surface area traversed by breaking fronts with 
velocities between c and c + dc is cA(c)  dc, so that the fraction of total surface area 
turned over per unit time, the turnover rate, is 

R = cA(c)dc. I 
This quantity also expresses the total number of breaking waves of all scales passing 
a given point per unit time; the distribution cA(c) dc specifies the expected number 
per unit time passing a fixed point with velocities in the interval c to c+ dc. 

What is the rate of energy loss from the waves to  turbulence per unit length of 
front in these breaking events 1 This question has been examined by Duncan (1981) 
in a series of laboratory experiments; he showed that, in a continuing active breaker 
in deep water, the breaking zone extends down the forward face of the wave over 
a fixed fraction of its amplitude and that its shape is geometrically similar for waves 
of different scales. Furthermore, he found that the breaking waves themselves are 
geometrically similar, so that the cross-sectional area of the breaking zone is 
proportional to the square of the local wavelength, or to (cz/g)2. The weight of the 
breaking zone per unit length of the front then exerts a tangential force per unit length 
proportional to c 4 / g  that acts on the incoming stream, whose speed is approxi- 
mately c. Consequently, the rate of energy loss per unit length of front is b(c6/g), 
where b is a numerical constant estimated by Duncan from his experiments as 
approximately 0.06. 

It is interesting to observe, even at this stage, that the rate of turbulent-energy 
production increases very rapidly with the speed of advance c of the breaking front. 
A few large-scale breaking events can produce as much energy loss from the wave 
field and input to the turbulence as many smaller ones. Nevertheless, the characteristic 
timescale for the duration of a breaking event, the ratio of the wave energy in one 
wavelength to the rate of loss by breaking, is proportional to the wave period, so that, 
in this sense, both large- and small-scale breaking events are equally transient. 

The average rate of energy loss per unit area by breakers with speeds between c 
and c + dc is then 

B ( C )  dc = bg-'c6 A(c)  dc. (6.3) 

Let us now identify the scales of waves that are breaking by the speeds with which 
their fronts advance. For the larger-scale breaking events, i.e. those whose phase 
speeds c > (27~5) C, where C is the phase speed of the dominant wave, the associated 
wavenumber is simply k = g / c 2 .  The speed of advance of smaller- or microscale 
breaking events is, however, influenced strongly by long-wave advection, and this 
introduces a substantial complication in the transformation. One might possibly 
argue that breaking occurs predominantly near the crests of the dominant waves 
where the orbital speed is uo, so that k % g / ( c - u o  cos B)2,  where B is the angle between 
the breaking front and the dominant wave. This matter will not be pursued further 
here, however ; let us concentrate on the larger-scale breaking events. 
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element dc on the velocity plane by 
With k = g/c2, an element of area dk on the wavenumber plane is related to the 

dk = kdkdo, 

= -- 2g2 c dc do, 
C6 

- - -- 2g2 dc, 
C6 

the negative sign being associated with the fact that integration to larger k 
corresponds to integration to smaller c. The rate of energy loss (4.2) in the 

e(k) dk = Y / ~ ~ ( C O S  8)3P U; k-' dk wavenumber plane 

= $z(c) dc, (6.5) 

the factor ?j arising if the direction of c is taken to lie between -?jn and ?jx, while that 
of k ranges over --R to 7c. Consequently, dropping the negative sign, 

e ( ~ )  dc = 2yP(cos 8 ) 3 P  U: k-2 dk, 
= 4yB3(cos 8 ) 3 P  U: c - ~  dc, (6.6) 

from (6.4) and (6.5), so that, from (6.3), we have for the distribution of length per 
unit area of breaking front per velocity element 

~ ( c )  = (4yp  b-1) (cos o p u :  gc-7. (6.7) 

This distribution decreases very rapidly as c increases - those fronts associated with 
larger scales that produce whitecaps are evidently a very small fraction of the whole. 
The distribution in direction is also considerably narrower than the spectral 
distributionitself, which is proportional to (cos o ) P  - apreponderanceofbreaking-wave 
events advance in directions close to that of the wind. 

The expression (6.7) now enables us to estimate explicitly the expected number 
of breaking waves passing a given point with velocities in the interval c to c +dc, 
cA(c) dc, or with speeds in the interval c to c+dc regardless of direction: 

= (4yP b-l I(3p)) ~ i g c - ~  dc. 

The total density of breaking fronts (expected total length per unit surface area) that 
have speeds between co and c1 is therefore, from (6.7), 

= (3p b-' 43p)) u: g(ci5 - CT5),  (6.9) 

and the expected number passing a given point per unit time with speeds in this range 
is 

C1 

n(c,,c,) = I, n(4dc 

= (y/93b-'1(3p)) u$ g(c64- c 3 .  (6.10) 

With the values given previously, the numerical values of the coefficients in (6.9) and 
(6.10) included in the brackets are both approximately 

If we consider only those breaking fronts that generate a train of bubbles, the event 
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being then identified as a whitecap, then one might postulate that only these breaking 
zones with a rate of energy release bc5/g exceeding some threshold value, eT say, will 
contribute. The lower limit of integration in these expressions is then co = cT, where 

eT = bc$/g. 

If, under light winds or at a short fetch, the longest waves that are breaking are 
shorter than those with speed cT, then virtually no whitecaps will be formed. Yet if 
they are even somewhat longer, then the terms cr5 and cr4 are much smaller than 
cg5 and ci4 respectively. Consequently, in this case, the expected length of whitecap 
fronts per unit area is almost independent of the speed of the longest waves in the 
field, and is equal to 

(6.11) 

while the expected number passing a given point per unit time 

n, = (7s” b-l43p) ) cq4 gu3,, (6.12) 

both increasing as the cube of the friction velocity. 
There are, unfortunately, no measurements yet available with which these 

expressions can be compared in a significant way. They are certainly related, though 
somewhat tenuously, to that rather ill-defined oceanographic statistic, the degree of 
whitecap coverage, or the fraction of surface area covered by bubbles. If bubbles, 
once generated, persist for an average time T on the surface, then the whitecap 

W = cT/i(~)dc. 
coverage is 

Now T is likely to depend on the surface temperature, atmospheric humidity and 
various surface properties not well understood; if we simply suppose it to be a 
constant, then by a similar calculation, 

I 

(6.13) 

where cT is the slowest speed of fronts capable of producing whitecaps, provided, of 
course, the fastest breaking waves are moving more rapidly than this. Although the 
accuracy of this estimate is likely to be low (matching, indeed the considerable scatter 
in reported measurements of the whitecap coverage), the wind-speed dependence that 
it exhibits is close to, but a little less than, those found empirically. Fitting 
observations to the form W cc Un, Monahan (1971) found n - 3.4, Tang (1974) gives 
n = 3.2, Wu (1979) 3.75 and Monahan & Muircheartaigh (1980) 3.52 or 3.41. 
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